研究成果

プレプリント等

  • PSYLOCKE: Provably Secure Logic Locking with Practical Efficiency
    著者
    Y. Watanabe, K. Asano, H. Hirata, T. Ono, M. Yang, M. Iwamoto, Y. Li, and Y. Hara
    Abstract

    Logic locking is an obfuscation technique designed to protect the intellectual property of hardware designs and has attracted considerable attention for over a decade. However, most logic locking schemes have been developed heuristically, leading the field into a cat-and-mouse game between attackers and defenders. Indeed, several proposed schemes have already been broken. While recent works have introduced provably secure logic locking, they often incur impractical overhead or fail to support the ASIC design paradigm while offering strong theoretical security guarantees. In this work, we propose PSYLOCKE, a provably secure and practically efficient logic locking scheme that balances formal security guarantees with implementation feasibility. We introduce a new security paradigm that formalizes logic locking under predetermined allowable leakage, such as circuit topology, and we provide refined definitions of resilience against specific attacks. Our analysis bridges general security definitions and attack resilience, quantifying how leakage impacts the success of real-world attacks. PSYLOCKE is provably secure under topology leakage and achieves significant efficiency improvement compared to existing provably secure logic locking schemes. Alongside our theoretical analysis, we demonstrate through quantitative evaluations using widely-used benchmark circuits that PSYLOCKE strikes a favorable balance between practical performance and security. Concretely, PSYLOCKE reduced the Area-Power-Delay overhead by an order of magnitude while achieving the same security level, compared to the existing provably secure logic locking scheme.