セキュリティ情報学実験 ~課題説明~ _{情報理工学域} I 類

渡邊洋平 阿波拓海 淺野京一

ペアリング

- ▶ 2人1組のペアをつくり、中学校の役と予備校の役に分かれて 課題を行います.
 - ※受講者数が奇数の場合は、3人の組を1つ作ります.
- ー学校の役が2人と予備校の役が1人 ▶ Linux(Ubuntu)デスクトップ環境を用いて,中学校の役と
- 予備校の役が各自のPCでプログラムを作成し, 通信を含むPPDMプログラムを完成します.

作成するプログラム

- 2つのプログラムをJava言語で作成します。
 1つ目は各自で作成し、2つ目はペアで作成します。
- プライバシーを考慮しない非PPDMプログラム(各自で作成) 生徒の成績(成績行列)と予備校の裏情報(重み行列)を 両方知っているという前提で, 行列の積によって,適性行列と合否行列を直接計算 これはペアではなく,各自が作成します。
- PPDMプログラム(ペアで作成) 前ページのPPDMプログラムをペアで作成 計算結果の適性行列,合否行列が非PPDMプログラムと 一致することを確認してください.

課題の提出と評価について

- ▶ 課題の提出
 - プログラム
 - レポート
 作成したプログラムの解説、ペアでの役割分担や考察
 - 詳細は3週目に説明します.
- ▶ 評価方法
 - 出席点、プログラム、レポート

アルゴリズムの説明

アルゴリズムの流れ 中学校

成績行列A (生徒数4×科目数6)

 1科目数×科目数の 乱数行列Mを生成 (今回は6×6)
 6Mを左右に分割した行列 M_{left}, M_{right}を生成
 7A' = A×M_{left} を計算

 $①A'' = A \times M_{right} \times B' を計算$

¹⁶{0,1}を{合,否}に変換し 最終的な合否行列を得る

重み行列B (科目数6×高校数4)

③Mの逆行列M⁻¹を計算
 ④M⁻¹を上下に分割した行列
 M⁻¹_{top}, M⁻¹_{bottom}を生成
 ⑤B'= M⁻¹_{bottom} × Bを計算

⑪B"= A'× M⁻¹top×Bを計算

③適性行列=A"+B"を計算
 ④合格最低点から,
 {0,1}の合否行列を計算

▶ 簡単な例として,

中学校の成績行列が生徒数2と科目数2, 予備校の重み行列が科目数2と高校数2

の場合のアルゴリズムの流れを説明します.

成績行列A

重み行列B

予備校

重み行列B

M_{left}を計算

M_{left}を計算

中学校	予備校
80 70 2.0 1.0	3.0 -1.0 0.8 1.2
60 40 5.0 3.0 Me	-5.0 2.0 1.1 0.9
成績行列A 乱数行列 M を生成	逆行列 M⁻¹ を計算 重み行列B
510.0 -1.8 -4.2 A'ā	送信 510.0 -1.8 -4.2
320.0 B'z	を送信 320.0 B' = M ⁻¹ _{bottom} ×
$A' = A \times B'$	▲ A' Bを計算
M _{left} を計算	
-522.0 -1218.0	141.0 159.0 663.0 1377.0
-324.0 -756.0	1 92.0 108.0 416.0 864.0
A" =	■
A×M _{right} ×B' 去,三上答	を計算 ¹ top×B
後司昇	▲ 1.0 1.0 ▲ A 喬樹 単 B 高校
	0.0 1.0 120 100
	合格最低点から合格最低点
	合合行列を計算

アルゴリズムの流れ

中学校

成績行列A (生徒数<mark>4</mark>×科目数<mark>6</mark>)

 1科目数×科目数の 乱数行列Mを生成 (今回は6×6)
 6Mを左右に分割した行列 M_{left}, M_{right}を生成
 7A' = A×M_{left} を計算

 $①A'' = A \times M_{right} \times B' を計算$

¹⁶{0,1}を{合,否}に変換し 最終的な合否行列を得る

重み行列**B** (科目数<mark>6</mark>×高校数<mark>4</mark>)

③Mの逆行列M⁻¹を計算
 ④M⁻¹を上下に分割した行列
 M⁻¹_{top}, M⁻¹_{bottom}を生成
 ⑤B'= M⁻¹_{bottom} × Bを計算

⑪B"= A'× M⁻¹_{top}×Bを計算

③適性行列=A"+B"を計算
 ④合格最低点から,
 {0,1}の合否行列を計算

週毎の課題の説明

速い人は翌週の課題を進めてください

1週目

1. 非**PPDM**プログラム <入出力>

- > 入力:成績行列,重み行列,合格最低点
- ▶ 出力:適性行列, 合否行列

いずれもtxtファイル

<処理>

- 1. 成績行列,重み行列,合格最低点を読み込む
- 2. 成績行列と重み行列の積により、適性行列を計算
- 3. 合格最低点との比較により、合否行列を計算
- 4. 適性行列, 合否行列を出力

<注意>

- ▶ 行列の値は、double型の二次元配列として定義してください.
- IEDのPC(Ubuntu)環境上で作成,実行してください.
- ※Windowsではなく、Ubuntuで作成してください

2. PPDMプログラム

- 非PPDMプログラムを再利用しながら、PPDMアルゴリズムを実装
- 1週目、2週目は、中学校役と予備校役に分かれて 通信以外の部品を作成してください。
- ▶ 3週目は、両方のプログラムを通信でつなぎます.
- <入出力>
- 入力 中学 : 成績行列
 予備校 : 重み行列, 合格最低点
- 出力
 中学
 :合否行列
 予備校
 :適性行列

いずれもtxtファイル

<処理>

非PPDMプログラムとPPDMアルゴリズムを参考に自分で考えること

行列の値は、double型の2次元配列を使用してください。

2週目

PPDMプログラム(余力のある人は先に着手して構いません)

- 非PPDMプログラムを再利用しながら、PPDMアルゴリズ ムを実装
- ▶ 1週目, 2週目は, 中学校役と予備校役に分かれて 通信以外の部品を作成してください.
- ▶ 3週目は、両方のプログラムを通信でつなぎます.

1週目に引き続いて,通信以外の部品を作成してください.

3週目

PPDMプログラム

- 非PPDMプログラムを再利用しながら、PPDMアルゴリズ ムを実装
- ▶ 1週目, 2週目は, 中学校役と予備校役に分かれて 通信以外の部品を作成してください.
- ▶ 3週目は、両方のプログラムを通信でつなぎます.

通信プログラムは難しいので, TAの作成したプログラムを利用してください.

Javaの基本的なコマンド

。実行

パッケージ上位のディレクトリに移動し, java [パッケージ名]/[クラスファイル名] (例 java contentssecurity/Main)

VNIXの基本的なコマンド
cd :ディレクトリの移動
scp -r :ファイル・ディレクトリのコピー (例 scp -r programs root@linuxXX:[保存パス]
mkdir :フォルダの新規作成
passwd :パスワードの変更
ls :ファイルやディレクトリの情報を表示

- pwd
- :現在のディレクトリの場所を絶対パスで表示

▶ ファイル入力 (一例)

FileInputStream fis = new FileInputStream("FILEPATH");

InputStreamReader isr = new InputStreamReader((fis),"UTF-8");
BufferedReader br = new BufferedReader(isr);

と書き,

String input = br.readLine();
とするとinputに一行目のテキストが読み込まれるので,
","で区切り, double型に変換すれば良いです.
※) 区切り方
Stringクラスの, splitメソッドを参照.

※) FILEPATHについて

("./contentssecurity/seiseki.txt")など.

- ▶ 乱数生成:Javaのライブラリーを使用
- ▶ 逆行列の計算方法:掃き出し法以外にも、 ヤコビ法、ガウス・ジョルダン法等があります。
- Javaの書き方やUNIXのコマンド, emacsについて.....
 : 外部サイトを参照
 - ※)岩本・渡邉研究室WEBサイトの コンテンツセキュリティ実験のページにも, 外部サイトへのリンクがあります.

通信プログラムの説明 (詳細は2日目以降に説明します)

package contentssecurity Connector class

- double[][] getTable()
 引数:なし
 返値:double[][]
 テーブルを受け取るメソッド
- void sendTable(double[][])
 引数:double[][]
 返値:なし
 テーブルを送るメソッド

作成手順

- 岩本・渡邉研究室WEBサイト※ > 講義関係 > コンテンツセキュリティ実験のページに アクセスし、ファイルをダウンロード ※「岩本・渡邉研究室」でWeb検索して下さい.
- 2. Main.javaファイルに記述
- 3. 各プログラムを作成した後, 3日目に Linux仮想マシンにアップロードし実行.

注意事項

- Javaファイル(Main.java)のコンパイル・実行手順
- Main.javaがある階層の上位の階層に移動 例: kadai○/contentssecurity/Main.javaの場合, kadai○に移動
- 2. Main.javaをコンパイル コマンド: javac contentssecurity/Main.java
- 3. Main.javaを実行 コマンド: java contentssecurity/Main

Linux 参考情報

▶ 仮想環境へのログイン

- 1. スタートメニューから端末エミュレータを起動
- <u>ssh root@linux〇〇</u>と入力
 ※〇〇はマシン番号
- 3. パスワードを入力(初期パスワード:linux〇〇)
- ▶ 仮想環境にファイル・ディレクトリをコピー
- 1. スタートメニューから端末エミュレータを起動
- 2. <u>scp −r [コピー元] root@linux○○:[コピー先]</u> と入力 ※○○はマシン番号

3. パスワードを入力

エディタやライブラリの使用、ペアの役割分担 などは自由に行って下さい。 ただし、最終レポートにその旨を記載すること。

▶ 授業時間外で質問がある方は,下記の アドレスへ連絡を下さい.

csec_exp2021@oslab.inf.uec.ac.jp